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Abstract. We study a family of the one-dimensional contact processes introduced by Durmrett
and Griffeath, which is parametrized by 8. For each 6 > 1, there is a unique critical value A;(8)
so that any process becomes extinct with probability 1 for A < A.(f), but all processes starting
from non-empty initial states have positive probabilities of survival for A > A¢(9). In this paper
we give rigorous upper and lower bounds for the critical line A = A;(#} for 1 € @ < 2. Tn order
to obtain the upper bound we extend the Holley-Liggett argument which was originally given
for the case @ = 2 (the basic contact process). We construct a new class of attractive renewal
measures with positive densities and the upper bound of A.(8) is given as the largest root of a
cubic equation, #4% — (38 — A% — 3(2 = A +(2 ~8) = 0. Recently Liggett reported an upper
bound of the critical value for the case & = 1 {the threshold contact process} by a modified
version of the Holley-Liggett argument. Our result includes these previous results as special
cases.

1. Introduction

In the present paper we study a family of one-dimensional contact processes introduced by
Durrett and Griffeath (1983). The one-dimensional contact process is a continuous-time
Markov process on a lattice Z. The state at time ¢ is given by a set n, C Z of the lattice
sites which are occupied by particles. The system evolves as follows:

@) if x € n,, then x becomes vacant at rate 1,

(ii) if x ¢ n,, then x becomes occupied at the rate f(N,) which depends on the number
of nearest-neighbour sites {x — 1, x + 1} occupied by particles,

Ne=|gnN{x—1x+1} (L.I}
where |A| denotes the number of sites in a set A. We assume that f(NV) is the following
function: )

0 ifN=0
Fm={r  iEN=1 (12)
g2 iftN=2
where A and @ are non-negative parameters.

Figure 1 illustrates the above elementary processes. Here the full circles denote particles
and the open circles denote vacancies. This process can be viewed as a simple model of
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Figure 1. The elementary processes of the #-contact process.

the spread of infection of a disease. An individual at x € Z is infected if x € n; and healthy
if x ¢ n;. The parameter A is the infection rate in the case that one of the neighbours is
infected. It is natural to assume that the infection rate in the case where both neighbours
are infected is different from that in the case where only one of the neighbours is infected.
The parameter & is the ratio of the infection rates of these two different situations. The
process with 8 = 2 is usually called the basic contact process (BCP) and was first studied
by Harris (1974). If 8 = 1, then f(N) =0for N =0and f(N)=A forall N 2 1. The
process with 8 = 1 may be called the threshold contact process (TCP) {Liggett 1991b).

It is well known that the BCP (8 = 2) is equivalent to the Reggeon quantum spin model
in high-energy physics (Brower ef al. 1978, Grassberger and de la Torre 1979). It should be
remarked here that the TCP was also studied in a different context. Dickman and Burschka
{1988) introduced a non-equilibrium lattice model as a simplified version of the model for
catalytic surfaces proposed by Ziff et af {1986). Their model is called the A model but is
equivalent to the TCP if the roles of particles and vacancies are exchanged. In this paper
we consider a family of the contact processes for

162, (1.3)

We will call this famnily the f-contact process (or #-CP for short) here.

The 8-CF, n;, can be defined in the standard method following the textbook of Liggett
(1985) for the interacting particle systems as follows. We write n(x) = 1 if x € n and
n(x) =0 if x ¢ n. The state space is X = {0, 1}* and let C(X) be a set of continuous
functions on X. We define the formal generator £ on C(X) as

Qf ) =Y _ el MLF ) — f@)] (1.4)

xek

for f € C(X) with
e(x, m) =)+ A1 = (0l — D +nlx+1) — 2 - 0)npx — Dax + 1)} (1.5)

where A and @ are non-negative parameters and #* denotes the configuration where
n*(u) = n(u) for v # x and n*(x) = 1—»n{x). We consider a spin system in which only one
spin flip (n,(x) =0 > 1 or n,{x) = 1 = Q) can occur in each transition with the flip rate
(1.5). The Markov semigroup S(¢) is defined by Q2 as S(t) f = limpeo(f = (¢/0)Q)" f for
F € C(X)and ¢t = 0, where [ is the identity operator. There is a unique Markov process
n, corresponding to S(¢f) for each A and 4. The #-CP can be also constructed by using the
graphical representation (Griffeath 1979, Durrett and Griffeath 1983). More detail for the
graphical representation of the 8-Cp for the case (1.3) is found in Katori and Konno (1993).
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If 8 2 1, the addition of an exira particle to the state of the process at some site does
not decrease the creation rate of a particle at any vacant site. Of course, it does not increase
the annihilation rates of any other particles, because the rate at which an occupied site is
vacated is fixed to be 1. Such a property is usually called attractiveness. Because the 6-CP
is attractive for 8 = 1, the upper invariant measure », g exists foreach A 2 0and 8 = I:

ns = lim 515() . (1.6)

where &; is 2 point-mass on # = 1. In other words, v, 4 is the stationary state of the present
process starting from the state with all sites occupied; no = Z. Consider the density of
particles in this stationary state

P, 0) = vy e{n : nlx) =1} (L7)

which is independent of x € Z, since v, 4 is translation-invariant. We can regard p(A, 8) as
an order parameter and define a critical value A.(¢) by using p(A, ) for each & > 1. We
find the following identities:

Ao(8) = inflA > 0: p(r,8) > 0} ,
=infA20:P(n#£6"1>0>0 for any non-empty initial state}
= sup{A > 0: P(n, = @ for some r > 0) = 1 for any initial state}. (1.8)

That is, any process becomes extinct with probability 1 if A < A.(8), while if L > A.(F)
all processes starting from non-empty states have positive probabilities of survival. If we
interpret the 8-CP as a simple model of the spread of infection of a disease, the former
may correspond to the extermination of the disease and the latter may represent the state
where the infection is spreading and healthy individuals and infected ones coexist. In the
context of the chemical reactions, the extinction state may correspond to the poisoned state
and the survival state may correspond to the active steady state of the catalytic surfaces.
Durrett and Griffeath (1983) observed that the edge speeds characterize the critical values
and proved that A.(¢) is a strictly decreasing function of # if 1 € # < 2. When we consider
a (A,8)-plane with 0 £ A < 00,1 £ 8 < 00, A = A(f) gives a critical line which divides
two phases of the long-term behaviour of the processes: extinction phase (A < A(€)) and
survival phase (A > ().

Although the long-term behaviour has been well understood {Durreit and Griffeath
1983), the value of A.(8) is still unknown for any 8. For 8 = 2 (BCP), there have been
many papers giving bounds for the critical value. Among them the bound A.(2) < 2 given
by Holley and Liggett (1978} is the best upper bound, which is much betier than-the bounds
obtained by the contour method (Gray and Griffeath 1982).

In the Holley-Liggett argument, the survival is proved by showing the existence of a
renewal measure g such that

nmelnin(x) =1 for some x € A} 2 uln:n{x) =1 for some x € A} (1.9

for any finite subset A of Z (gee Liggett 1985, pp 268-75). Here the renewal measure i
is defined corresponding to some probability density f(xn) of finite mean on {1,2,3, ...} as
follows, If A = {x1,x2,...,%,} with x; < X3 <--- < x,, then

pln:inGy=1for 1<i<nand n{x)=0"x ¢ A such that x; < x < x;}
;:11 Figy —x:1)

Yo kf (k)

(1.10)



6600 M Katori and N Konno

In other words, w is the stationary distribution where the distances befween successive
particles are independent and identically distributed with density f{r). Of course such
independence does not hold in the real distribution v, g. Therefore p can be considered
an approximation for v, g. In order to make (1.9) hold for any finite subsets A of Z, the
density f(r) should be a logarithmically convex function in #. Holley and Liggett derived
explicitly such an f(n) which is expressed by using factorials for the BCP (8 = 2) when
A 2z 2. Their result shows that the RHS of (1.9) is positive for all non-empty subsets A
when A 2 2. Because it follows p(A,2) > 0 as a special case A = {x}, this result implies
he(2) < 2.

Recently Liggett reported upper bounds for the critical values for two families of contact
processes which are different from the 8-CP; the spatially inhomogeneous contact processes
(Liggett 1991a), and the periodic threshold contact processes (Liggett 1991b), The latter
family contains the TCP as a special case. His result is the following. Let A; be the largest
root of the cubic equation A3 —A%2 — 334+ 1 =0 (A = 2.170...); then Ac(1) < A;. The
proof is also based on the Holley—Liggett argument. However, in this case, the explicit
form of f(n) was not given and only the existence of the required renewal measure was
shown. Unfortunately, it does not seem very easy to extend this new proof for 3 1.

In the present paper, we extend the original proof of Holley and Liggett {1978) and
give the upper bounds for the critical values 4.(8) for 1 < @ < 2 by constructing f(n)
explicitly, Our result is the following.

Theorem I.1. Assume that 1 € 6 € 2. Let Ay(@) be the largest root of the cubic equation
—(30-2DA2—32 -0\ +(2—-9) =0. (1.11)

Then A.(8) < Ay(@).

It is easy to confirm that this contains Holley—Liggeit’s bound A,(2) < 2 and Liggett’s
bound A.(1) < X; as special cases. We will derive iterative equations for f(r) and
show that f(r) can be expressed by using Gauss’s hypergeometric series in the form
F(—(n—2),—(n—=1),2;z) for 1 €6 < 2. In the limit & — 2, the variable z becomes
1 and the hypergeometric series is reduced to a combination of the gamma functions {i.e.
factorials), reproducing the result of Holley and Liggett (1978) for the BCP (8 = 2). Our
result gives another proof of Liggett (1991b) for the TCP (8 = 1).

It is rather easy to give lower bounds for A.,(9) if 1 € @ < 2. The following is a simple
extension of the lower bound for the critical value of the BCP, A(2) > (1 +37)/6 =
1.180..., given by Griffeath (1973).

Theorem 1.2. Let

AL(O) = ————[8 — 1+ V82 + 108 + 13]. (1.12)

2(9 +1)
Then AL{8) <A@ for1 <8 <2,

The above two theorems give bounds for the critical line A = A;(8) in the phase diagram.
Figure 2 shows the numerical values of the upper and lower bounds for the critical line
given by our theorems.

By computer simulations or some (non-rigorous) numerical methods, the critical values
of the BCP and the TCP are estimated as, A.(2) ~ 1.649 (Brower et a/ 1978, Konno and
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Figure 2. Upper and lower bounds for the critical line A = A.(§) given by theorems 1.1'and 1.2
for 1 £ 6 < 2. The points marked by x show the values A, (1) = 1.742 and A.(2) = 1.649
estimated by computer simulations or some numerical methods,

Katori 1990) and A.(1) > 1.742 (Dickman and Burschka 1988, Dickman and Jensen 1991,
Ferreira and Mendiratia 1993). Notice that the inverse of T, = 0.60628 £ 0.00004 of
the D = 1 Reggeon quantum spin model estimated by Brower er af (1978) corresponds to.
Ae(2). Becauge the TCP is obtained from the A meodel of Dickman and Burschka (1988)
by replacing particles by vacancies and vice versa, A.(1) is the inverse of the critical value
Ao = 0.574 141(2) (Dickman and Jensen 1991) of the A model.

The paper is organized as follows. In section 2, we briefly review the Holley—Liggett
argument and remark on the required modifications for the present situation. Sections 3 and
4 are devoted to proving theorem 1.1. There we show the probability density f expressed
by using the hypergeometric series, which gives the desired renewal measure. The proof of
theorem 1.2 is given in section 5. Some concluding remarks are given in section 6.

2. The Holley—Liggeit argument

The Holley-Liggett argument (1978} treats coalescing dual processes. Let ¥ be the
collection of all finite subsets of Z, and define

Ha A =[[1-9=1 @.1)

XE€A

for n € X, A € ¥ (the product over the empty set is taken to be 1). It is easy to find that

QH(n, A) = q(A, BYIH(, B) - H(n, A)] @2
B

where

gA.BY=3 cx) Y.  p&C) ' 2.3)

xEA CiANxDUC=8
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with

c(x) = 1+801 2.4)
1/(1463) fC=0

@-—DA/(1+8L) fC={x—-1,x}or{x,x 41}
Q2—-)A/(1+6X) fC={x—-1x,x+1}

0 otherwise

P(x? C) = (2.5)

where €2 is the formal generator of the #-contact processes (1.4). The above defines a
continuous-time Markov chain on ¥ if and only if 1 £ @ < 2, and we write this process as
A;. Forevery n € X and A € Y, the following duality relation holds for any ¢ > 0:

SWH(, A)m) = E*[H(n, A)) (2.6)

where E4{ - ] denotes the expectation value for the process starting from A; Ag = A. This
dual process A, is the same as the coalescing branching processes {£/(6, A}} found on page 9
of Durrett and Griffeath (1983). If we regard A, as a set of the sites occupied by particles,
we can say that each particle does three different things. A particle gives birth to a new
particle at one of the neighbouring sites at rate (8 — 1)A for each neighbouring site (single
branching). At rate (2 — &)\, each particle gives birth to two particles simultaneously at
both of the two neighbouring sites (double branching), and each particle will be annihilated
at rate 1. This process is a coalescing process; if a particle lands on a site which is already
occupied, then two particles coalesce to form one particle.
Forall A € ¥, define

o(A) = PA(A, % @ for all £ > 0)%o. @7

By the duality relation (2.6), the critical value A (8) defined by (1.8) is characterized by
o(A) for 1 <6 < 2as

2(0) =inf(A 20:0(A)>0 YAeY, A# 0l =sup(A20:06(4)=0 "Aec¥} (2.8
(see the identity (10) in Durrett and Griffeath 1983).
The Holley-Liggett argument is based on the following proposition as explained on

page 268 of Liggett (1985).

Proposition 2.1. 1If

R =0 0<h(A) K1 for AFD (2.9)
lim h{A)=1 (2.10)
|A]—>c0
and
%EAUI(A:)]Imn >0 VAey @1
then

o(A) = h(A). (2.12)
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Then the problem is how to choose % which satisfies the assumptions in proposition 2.1.
If such an % is chosen and A(A) > O for all A # § for given (A, #), then A 2= A.(8) by the
identity (2.8). Holley and Liggett proposed the following choice for the BCP (8 = 2).

{a) Choose & of the form

h(A) = u{np:nx)=1 for some x € A} (2.13)

for some renewal measure w1 on X (with A(@) = 0).

(b) Choose the density f(») which determines . through (1.10) so that (2.11) holds
with equality for all A of the form {1,2,...,n}. .

1t shouid be remarked that, by the duahty relation (2.6), (2.7} is written as

5(A) = vipln 1 n(x) =1 for some x € A} (2.14)

by using the upper invariant measure of the @-CP. Therefore the choice (a) seems to be
natural.
If we also take this choice for @ # 2, we obtain the following proposition.

Proposition 2.2. Let 1 £ 6 € 2. Suppose that there are functions f(n) on {1,2,3,...}
which satisfy '

WFB+ FP — Q2 +Nf2) =

n=l (2.15)

D+ D+ Y FOFR—F-21+Nfmy =0 >3

. k=1 :

Y fm=1 ' (2.16)

n=1

Y nfm) < o0 ' @.17)

n=1

0< f(n) <1 nz1 (2.18).
7ancl

fin) fr+1) v

FaiD > fat2) n>l. : 19
Then for all non-empty subsets A € ¥

o(A)=vigfn:n(x) =1 forsomex € A}

> ufn:n(x) =1 forsomex € A} >0 (2.20)

where 4 is the renewal measure corresponding to™f (). It means that the 6-CP survives.
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Proof. Let F(n) = 3 ;o f(k). From the choice (b), F(n) should satisfy the following
equations:

OLF(2)+ (2 — AF(3) = F(1)? (2.21)
S FlF(r+1-k) =20F(n+1) n>2. (2.22)
k=1

It should be remarked that (2.16) is written as
FhH=1. : (2.23)

It is easy to see that (2.15) with (2.16) is equivalent to (2.21)-(2.23). We can see
the detail of the Holley-Liggett argument for § = 2 on pages 268-75 of Liggett (1985).
Because proposition 2.2 is a straightforward extension of a part of lemma 1.25 on page 272

of Liggett (1985) here we only give some remarks on the required modifications for the
cases @ # 2. .

Fix A € ¥, and write A = U_| A;, where A; = [I; + 1, 7; — 1] are the ordered maximal
connected component of A. For x € Z, define

R(x) =pu{n:n=00n AN, cc)n(x) = 1}

and
L(x) = p{n: n="00n AN (—oo, x)n(x) = 1}.

By the properties of the renewal measure, the inequality (2.11) is written (instead of (1.26)
on page 273 of Liggett 1983) as

. L .
DLORE) + Q-0 3 LUDF@RC) <A Y ILERE) + LIDRED]. (224)
xeA i:lA;]=1 - i=1

The equation (1.28) on pagc‘ 273 of Liggett (1983),

n—1

Df(m) =) FEF@n—B) = Fn) (225)
1

k=

is valid only for n > 3 and the corresponding equation for n = 2 is given by

fQ)=FfD - FO+2-Drf(2) (2.26)
following (2.21) and (2.22). It should be remarked that if we use (2.25) and (2.26) correctly,
we rewrite (2.24) in the following form which is exactly the same as for the case § =2:

&

2 LER®) < %Z[L(&) Y, Fe~WR@+RE) Y, Fli- z)L(z)} . @27
XEA =1 >l 2eA zer,zeA

It is proved by a part of lemma 1.25 on page 272 and lemma 1.24 on page 271 of Liggett
(1985) that (2.27) holds if the assumption (2.19) of proposition 2.2 is satisfied. O



Critical line of the 8-contact processes 6603
3. Renewal measures expressed by the hypergeometric series

In order to solve (2.21)—(2.23), we introduce the generating function as done by Holley and
Liggett:

$uy =Y _ Fnyu" (3.1)
n=l1 . - R

where the assumption (2.23) is equivalent to

o)) _ . - 32)
du u=0 :
Let
=2 4e-1 | (3.3)
y=(2—8)+6xr. | (3.4)

" Then we obtain the equation which determines ¢(u) as

2 _ 2 i—-x 2__
&~ (u) ¢>( )+1+ +1+xu =0. . (315;

- The unique solution of (3.5} satisfying (3.2} is given by

0y 1+x _ 1—x T+ x \* -
""”)“m[“\/?‘z T 4(1+x)(2 . u)] (3.6)

From now on we will assume that 0 < x < 1land y > 0. Let

_ ) ¥
‘= 2 AR @D

then u_ < 0 < u,. The function (3.6) is real analytic only when #_ < 1 < u,. It implies
that if #,. < 1 there is no real solution F(n) which is summable, since 2"  F(r) = ¢(1).
On the other hand, if u,. 2 1, that is, if

>1+x+/20+0 ' (3.8)

then we can obtain a real solution F(r) of (2.21)—(2.23) by expanding (3.6) in a power
series in i, which satisfies

ZF(n) an(n) [1—\/1-21+x-1""2]<w. (3.9)

n=1 ¥ y2

To expand (3.6) in a power series in , the fol[bwing formula is useful.
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Formula3.J. WhenO0g<xland Qs g,
1

fos——=F 2o ;icsﬂ (3.10)
4l+xy =T )
with
1 1 2 \*?.

a=s and Cy = -é—z;_—l(l +x) PPy, e2) nz2 3.1D
where

. 1— '

e“"=‘/1:x+i‘/ 2" : (3.12)

and v(n, z) is Gauss’s hypergeometric series in the form
v, ) =F(—(n—2),—(n—1),2;2) nxz2. (3.13)
Applying this formula to (3.6), we obtain the following lemma.

Lemma 32, letx=QR2-0)A+@—1andy=02-6)+6% HOLx<1and
y 2 1+ x+ +/2(1 + x), then the unique solution of (2.15) which satisfies (2.16) and (2.17)
is given by

fimy=F@)—F@n+1) (3.14)
where

Fin) = %w(n,x) . (3.15)

Here we define

1+x nf2—1 . )
w(l,x) =1 and win, x) = ( > ) elt=20y(y =20y n=2 (316
. 1+x l—x
o . H .
e 3 +1 5 (3.17)
vn, ) = F(—(@n—-2),—(n — 1),2; 2) ne2. (3.18)

It is remarked here that the hypergeometric series (3.18) satisfies the following iterative
equation:

m+Dvin+2,2)— e+ DA +Dvn+1,2)+ @ =11 —2v(r,2)=0 nzl
with (1, z) = »(2, z) = 1. Then we obtain the following equation for w(n,x), n 2 1
n+uwn+2,x)—Cn+ DA+x)wh+1,x)—-®m - 11 - xDw@,x)=0 (3.19)
with

w(l,x)=w@,x)=1 (3.20)

where x is defined by (3.3) and 0 < x £ 1 is assumed.
Next we will prove the following lemma.
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Lemma33. 0K x < landy > 14 x4+ +/2(1Fx), f defined by (3.14)~(3.18)
satisfies (2.18). In other words, f can be considered as a probability density on {1,2....}
with finite mean.

Since (2.16) is satisfied, what we have to do is to show f(z) > 0 Yz > 1. From (3.14)
and (3.15), it is equivalent to

¥ >y Ynx1 ’ (3.21)
where
Gy = 2OFELD o (3.22)
w(n, x)

On the behaviour of the series {.(x)}:=12.., the following lemma will be proved.

Lemma 3.4. Let

&) =1+x+/2(1+%x). : (3.23)
 For0gx g1l . _
nlingo a,(x) = a*(x) (3.24)

a(x) =1 and a4, (X} < @pp1(x) < a*(x) YRz2. (3.25)
Then if ¥ = a*{x), (3.21) holds. Now we prove lemma 3.4. :

Proof of Lemma 34. From (3.19), (3.20) and (3.22), we obtain the iterative equation for
ap (—x)

—1
+2

Gup(x) = 143 4 <1+x){1+ I"x} (3.26)

(%)
with
ai{x) =1 ap(x) =1+x
(3.27)
B0 =36+20)  al)= -(“'—;‘gxiz—"l . :
By (3.26),
=1 (3.28)

a(x) = 1+x Yn>2 if 0<x
nz2:

and we can derive from (3.26) the following equation for
(n—Dn (1= x%?
T+ D0 13 e D) ) T
+3(l+x)[ 1 n 1—x? }
n+3 ln+d (n+2D0+3) ap(Z)n2(x)
3 1-x*{ 1 n 1—x?
LI Yo [n+4 T+ D+ e, (x) } '

1t is easy to confirm using (3.28) that the second term of the right side of (3.29) is positive
and its third term is non-negative if 0 < x < 1. Then, forn 22

an(x) < @p41(X) = @pi2(x) < Gp+3(x) if 0gx<gl., (3.30)

Bny3{X) — dpa(x) =

(3.29)

Because
a(x) < a3(x) < a:(x) if " xz0 (3.31)

by (3.27), it is proved that a,(x) is increasing in n forp 2 2, if 0 € x £ 1. The limit
(3.24) is obtained by taking the limit # — oo in (3.26) with (3.28). O
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4. The monotonicity of f(n)/f(n + 1)
In this section we will prove the following lemma.

Lemmad.]l. X0 x<gand y 2 a"(x) = 1+ x++/2(1 4 x), f defined by (3.14(3.18)
satisfies (2.19).

Remark 4.1. It is known that the stationary renewal measure with positive density f is a
reversible measure for the nearest-particle systems with birth rates

FUfr)
Iry=2""L"7 4.1
B, r) FAET @.n
The monotonicity of f(#)/f (n + 1), (2.19), means that this system is atiractive.
By (3.14) and (3.15), f(n)/f(n+ 1) = f(n -+ 1)/f(n + 2) is equivalent to
1 y—aix) > 1 y—aun (x) 42
an(%) ¥y — 8py1(x) ~ ap41(x) ¥ — @nya(x)
where a,(x) is defined by (3.22). By lemma 3.4, if y 2 &*(x), (4.2} is equivalent to
Fu(y) 20 (4.3)
for n 2 2 with a quadratic
_ 2 Apy2(xX) — @ (x) @n+2(%) — Ans1(X)
Fulz) =z an.c-x(x)—--————m ) —an )z + ap ()41 (XD IO — 4, () (4.4)

It is easy to see that F,,(z) has real roots when 0 € x £ 1 by lemnma 3.4. Let yp{(x) be the
larger root of F,(z). If y = y,(x), then f(n}/f(n+ 1) Zfn4+1)/Ffr+2).
The following lemma will be proved for y,(x).

Lemmad.2. HO0<x<],

Yulx) € a*(x) (4.5)
foralln =

At ﬁrst we notice that lemma 3.4 guarantees that (4.5) follows if F,(a*(x)) = 0 when
[t

For 0 < x £ 1, we define by using (3.16)+3.18)
F*(n) = —-w(n, x) nzl (4.6)
a*(x)n—l
F)y=F@n-F@R+l). 4.7)
In other words, f*{n) is obtained from (3.14) and (3.13) by letting ¥ = a*(x). Remark that
f*(n) is a function of x. By lemma 3.4, it is found that 7, (a*(x)) > 0 is equivalent to
e fret

R P ey 0<EslL (4.8)
Define

e(n) = f—;i:(:_)ll n>1 (4.9)
and

/ 2
=k(x)y=14 TTx (4.10)

Then we can prove the following lemma.
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Lgmma4.3.
 n4+N -k n—lk—=2 1 -
D= =1 4,11
g+ 1) (n+3) R g(n) "z (@.1D)
with
5—«k K2 — e+ 7 k3 — 9% 4+ 21k =21
=" - 4) = — 4.12
82 4 86 k(5 —«) 84 Akt —dic +T) (“-12)
For0g<x<1
g <gn+ 1) nz2. (4.13) -

Proof of Lemmma 4.3. By (3.19) and (3.15), we obtain the equation

(n+2)J\.2F(n+2)—(2n+i)lF(n-!-l)—(n—l)iiiF(n):O nzl (4.14)

where we have used (3.3) and (3.4). It is easy to derive the following equation from (4.14):

(n+If+2)~{Cn+3) - AWfn+ 1)~

=(12~22L——11—_T_—;)F(n+1) nzl. (4.15)

The corresponding equation for f*(x) is obtained by letting y = a*(x) Here we remark
that, because of (3.3) and (3.4), foreach0 < x € 1 ‘

y=a"(x) &= L= xx) — (4.16)
and that
) — 2u(x) — X =0, 17)
14+ x
Then

(r+3f n+2)—{2n+3H—«}fa+D~n=-Dk-2)f* ) =0 mzl.

By definition (4.9), we have (4.11). Letting n = 1 in (4.11), we have g(2) = (5 — k) /4«,
with which we obtain (4.12) by the iterative use of (4.11).
It is easy to derive the following equation from (4.11) forn = 2:

(n—brn [(k—2)° 1
3(""’3}'3("”):(n+3)(n+4)( v )g(n)g(n+1)2g(n+2)(g("+1)‘g(””
+ 1 3+x{ 1 _ n k=2 1 ]
n+4 « |n+5 (4+3Hn+4 kv ga+lign+2)
4 =2 1 i n K—2 1 .
n+4 « 8(ﬂ+2){ﬂ+5—(ﬂ+3)(n+4) K g(n+2)2}

(4.18)
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Note that the assumption 0 € x < 1 means that

2k < 1+42. (4.19)
By direct calculation using (4.12), we can show that, if (4.19) is satisfied,

82 <83 <e@. (4.20)

Now we prove (4.13) by induction. Suppose that

gD <gB) < sgm<gn+ ) < gl +2). (4.21)
By (4.18) and (4.19), we can conclude that g(n + 2) < g(n + 3) from (4.21) if

sn+ Dgln+2) > i(:)zsl B £ ;2 (4.22)
On the other hand, it is easy to show by (4.11) that
g(n+ Dg(n+2) = %—Kg(n+l)+ni4’c:2

2n+5)—k@n+3N—x n k-2 (4.23)

(n+ 4 (n+ 3k nt+4 «

if (4.19) is assumed. By direct computation, we can see that the right side of (4.23) is
greater than that of (4.22) for n 2 1, if (4.19) is assumed. O

Proof of Lemma 4./. Lemma 4.2 follows (4.13) of lemma 4.3, and as explained just above
lemma 4.2, if 0 € x € | and y 2 a*(x), then
fn) s fath v
fin+D f (n-+2)

On the other hand, we can confirm by direct calculation that

O f@

nz2. (4.24)

for yza*(x). (4.25)
oA TO N
O
Combining Lemmas 3.2, 3.3 and 4.1 gives the following proposition.
Proposition44. letx=Q-NA 4+ @ -DNady=2-6)+60 fO<x <1 and

yz21l4+x+4+/2(1 +x), then f deﬁned by (3.14)(3.18) satisfies all of the assumptlons
(2.15)2.19) of proposition 2.2.

1t is easy to show from the definitions (3.3) and (3.4) that when 1 < # < 2,if A 2 ]
and

B30 -DA =32 -0r+ Q2620 {4.26)

then
6<x<1 and  y>14+x+/20+x). 4.27)
Therefore the proof of theorem 1.1 is completed. 0

The numerical values of the largest root Ay(@) of the cubic equation (1.11) which is
obtained from (4.26) by replacing the inequality by an equality are given in table 1. There
the values of AL(@) given by (1.12) are also listed.
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Table 1, Numerical values of the upper and lower bounds for the critical values A.(8).

e AL(E) Ay}

1.0 1.224 2171
1.1 1212 2.148
1.2 1.214 2.127
1.3 1.209 2.107
14 1.204 , 2.089
1.5 1.2 2.072
1.6 1.195 2.056
1.7 1.191 2.041
1.8 1.187 2.027
1.9 1.184 2013
2.0 1.180 2

5. Proof of Theorem 1.2
By (2.1)-(2.5), we can easily obtain the following identity for any A € ¥:

Yo (ANED ~o (W] + O = DAY {[o(AUr— 1D -0 (Al +[s(AU{x+ 1) ~a (D]}

XGA XEA

+(2—9);\.ZEO‘(AU{I-—1,x+1})~—0’(A)] =0 (3.1)

X€A

where o (A) is definred by (2.7) and o (¥} =
Using {(5.1) for all A € {x, x+ 1, x 42} and by the translation invariance and symmetry
of the mechanism, we obtain the following identities.

Lemma5.l. ForxelZ letoy =oc({x]),m=c({x,x+1}), s =o({x,x+1, x4+2}), 05 =
o{ix.x +2D.os=c({x,x + 1,x +2,x+ 3D, and g = o ({x, x + 1, x + 3}). Then

6r+(3-6)
0n = m(}' (5.2)
022+ (3—-Or+ 1
= A+ -0 .3
2005 = —05 + (2 + 3oz — 20 ' (5.4)
(6 — DAos + (2 — B)Aos = (1 + 0o — (8 — Aoy — a7 . (5.5)

It should be remarked that proposition 5.9 on page 165 of Liggett (1985) is valid for
the present 8-CP. Then o (A) is submodular in the sense that

(AU B)+0(AN B) < 0(A) +0(B) (5.6)

whenever A,Be Y.

Using (5.6) for A = {x,x+1,x+2}and B = {x+1,x+2,x+3}, and for A = {x, x+1}
and B = {x 4 1, x + 3}, we obtain the following inequalities.
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Lemma 5.2.

Og g 20’3 — 09 (57)

Os Loyt oy —oy. (5.8)
Proof of Theorem 1.2. Combining (5.4), (5.5), (5.7) and (5.8), we obtain for 1 £ 0 <2

o4 2 —(2A =33 +2(A — Lo

(A+Dos € 3—Naos + (20 —Dhoo — [0 — DA — 1oy .
From them the following inequality is derived:

{222+ (2= 6)A — 3}o3 + {222 + (26 — 3} +2}o2 — {(6 — DA — 1}y 2 0.
By (5.2) and (5.3), it is equivalent to

{((@+1DA2— (@ — DA -3}y 2 0 (5.9
if 1 € & £ 2. Therefore, if A < Ap(8), where A (8) is defined by (1.12), oy = 0. By

the submodularity (5.6), c(A) =0 for any A € ¥ if o1 = 0. Then by the identity (2.8),
theorem 1.2 is proved. O

6. Concluding remarks

In this section, we give some comments on our results. First we remark that we can obtain
the lower bound for the order parameter p(X, 8), (1.7), as a corollary of propositions 2.2
and 4.4, because p(i, 8) = o({x}) by (2.14).

Corollary 6.1. Let Ay(#) be the upper bound of A.(@) defined in theorem 1.1. For
1<8<2and X 2 Ay(), p(A,0) 2 pL(X, 6), where

AMOA+ (2 —6))
2002432 -OA—-(2-6)

5 1+£ B3 — (30 — A2 =32 — A+ (2—6)
A 85+ (2-9) ’

alh, 8=

(6.1)

1t should be remarked that pr(A, 8) is the inverse of ¢ (1) given by (3.9) and that for
182 , - ‘

pL(ru(9),8) = (6.2}

)
a0 >0 YA @ (6.3)
Jim o(2,6) =1. (6.4)
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Figure 3. Lower bounds pp.(), @) for the order parameters p(x.8) given by corollary 6,1.
Notice that these bounds are positive for A 2 Au(8), which implies A.(8) € Ay (®).

The lower bounds pr.(A, 8) for the order parameters g(A, &) given by (6.1) are shown
in figure 3 for various values of 4. ’

Next we discuss the relationship between our renewal measure corresponding to f
defined by (3.14(3.18) and others. In the limit 8 — 2, x and y become 1 and 24,
respectively, and e¥ — 1 in (3.17). Because

LTy —a— )

F N )= 6.5
@87 D=t Zat e - §) ©

(3.15) becomes
Pln) = G-y 1 (6.6)

(n — Dlnl (2ay1

in this limit. This is nothing but the function which gives the renewal measure of Holley
and Liggett (see (1.18) on page 270 of Liggett 1985). In other words, the renewal
measures corresponding to f defined by (3.14)-(3.18) make a new class of renewal measures
parametrized by two variables x and y, which contains Holley—Liggett's as a special case.
In order to obtain an upper bound for the critical value of the TCP, Liggett (1991b) defined
f(t,n) fort > 0and n > 1 as a solution of a set of the differential equations with respect
to time ¢ under some initial condition. When 8 = 1, the probability density f(nr) defined in
the present paper may be the limit of this f{f,n) in t — oc. We hope that the present study
will extend the utility of the Holley-Liggett argument for proving the survival of processes.

Recently many kinds of non-equilibrium stochastic lattice models have been introduced
and studied intensively to understand non-equilibrium phase transitions (Dickman 1993).
Algorithms for computer simulations and series expansion techniques have been developed
and the efficiency of these methods are also reported for these non-equilibrium models as
well as for equilibrium spin models. However, exact or rigorous results for non-equilibrium
models are still few in comparison with equilibrium systems. The work reported here is one
of the trials to extend the statements which can be proved rigorously for the non-equilibrium
stochastic lattice models.
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