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1. F'hys. A: Malh. Gen. 26 (1993) 65976614. Rinted in the UK 
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Abstract. We sNdy a family of the onedimensiond contact processes introduced by Durrelt 
and Griffealh, which is parametrized by 8. For each 8 2 1, there is a unique critical value A,@) 
so that any process becomes extinct with probability 1 for A < A<(@, but all processes starting 
from non-empty initial states have positive probabilities of survival for A =- Xc(8),  In this paper 
we give rigorous uppr  and lower bunds  for lhe critical line X = A#) for 1 < 8 4 2. In order 
to obtain the upper bund  we exlend the Holley-Liggett argumenl which was originally given 
for the case 8 = 2 (the basic conlact process). We m"Ict a new class of attractive renewal 
measures with positive densities and the upper bound of A,(@ is given as lhe largest root of a 
cubicequarion.8A3-(38-2)X*-3(2-8)A+(2-8)~0. Recently tiggett reportedanupper 
bund  of the critical value for lhe case 0 = 1 (the threshold contact process) by a modified 
version of the Holley-Liggett argument. Our result includes these previous results as special 
Ca5es .  

1. Introduction 

In the present paper we study a family of onedimensional contact processes introduced by 
Durrett and Griffeath (1983). The onedimensional contact process is a continuous-time 
Markov process on a lattice 2. The state at time f is given by a set q, c Z of the lattice 
sites which are occupied by particles. The system evolves as follows: 

(i) if x E qr. then x becomes vacant at rate 1, 
(ii) if x qc .  then x becomes occupied at the rate f (N , )  which depends on the number 

of nearest-neighbour sites { x  - 1, x + 1) occupied by particles, 

Nx = Iqr fl { X  - 1, x + 111 (1.1) 

where [AI denotes the number of sites in a set A .  We assume that f ( N )  is the following 
function: 

0 if N = O  

e* if N = 2  

where I and B are non-negative parameters. 
Figure I illustrates the above elementary processes. Here the full circles denote particles 

and the open circles denote vacancies. This process can be viewed as a simple model of 

0305-4470193R36597+18$07.50 Q 1993 IOP Publishing Ltd 6597 

fV"= A i f N = l  (1.2) 
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Figure 1. The elementary p m s e s  of the Bcontact process. 

the spread of infection of a disease. An individual at x E 2 is infected if x E qr and healthy 
if x # qf. The parameter A is the infection rate in the case that one of the neighbours is 
infected It is natural to assume that the infection rate in the case where both neighbours 
are infected is different from that in the case where only one of the neighbours is infected 
The parameter 6' is the ratio of the infection rates of these two different situations. The 
process with B = 2 is usually called the basic contactprocess (BCP) and was first studied 
by Harris (1974). If 6' = 1, then f ( N )  = 0 for N = 0 and f(N) = h for all N > 1. The 
process with 6' = 1 may be called the threshold contact process (TCP) (Liggett 1991b). 

It is well known that the BCP (6' = 2) is equivalent to the Reggeon quantum spin model 
in high-energy physics (Brower et al. 1978, Grassberger and de la Torre 1979). It should be 
remarked here that the TCP was also studied in a different context. Dickman and Burschka 
(1988) introduced a non-equilibrium lattice model as a simplied version of the model for 
catalytic surfaces proposed by Ziff et ai (1986). Their model is called the A model but is 
equivalent to the TCP if the roles of particles and vacancies are exchanged. In this paper 
we consider a family of the contact processes for 

1 < e  < 2 .  (1.3) 

We will call this family the @-contact process (or 8-m for short) here. 
The 6'-CP, qt, can be defined in the standard method following the textbook of Liggett 

(1985) for the interacting particle systems as follows. We write q ( x )  = 1 if x E q and 
q(x)  = 0 if x # q.  The state space is X = {O, 1)' and let C(X) be a set of continuous 
functions on X. We define the formal generator SI on C ( X )  as 

Qfh) = C c C x .  31f(q") - fh)l (1.4) 
X€Z 

for f E C(X) with 

C ( X .  17) = +A(I  - I ~ ( X ) M X  - 1) + V ( X +  1) - (2 - e m  - i ~ x  + 1)) (1.5) 

where A and @ are non-negative parameters and qx denotes the configuration where 
q"(u) = q(u) foru # x  and$@) = l-q(x). Weconsideraspin system in whichonlyone 
spin flip (qt(x) = 0 + 1 or qf(x) = 1 + 0) can occur in each transition with the flip rate 
(1.5). The Markov semigroup S( t )  is de6ned by Q as S ( t ) f  = lim,,,(I-(t/n)Q)-"f for 
f E C(X) and t > 0, where I is the identity operator. There is a unique Markov process 
qt corresponding to S( t )  for each A and 6'. The 6'cp can be also constructed by using the 
graphical representation (Griffeath 1979, Durrett and Griffeath 1983). More detail for the 
graphical representation of the 0-CP for the case (1.3) is found in Katori and Konno (1993). 
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If 6' > 1, the addition of an extra particle to the state of the process at some site does 
not decrease the creation rate of a particle at any vacant site.. Of course, it does not increase 
the annihilation rates of any other particles, because the rate at which an occupied site is 
vacated is fixed to be 1. Such a property is usually called attractiveness. Because the 6'-cp 
is attractive for 6' 2 1, the upper invariani measure vA.o exists for each A 2 0 and 6' 2 1: 

U A . ~  = lim & S ( t )  (1.6) 

where 61 is a point-mass on q = 1. In other words, V A , ~  is the stationary state of the present 
process starting from the state with all sites occupied; qo = Z. Consider the density of 
particles in this stationary state 

(1.7) 

which.is independent of x E Z, since U A , ~  is translation-invariant. We can regard p ( A ,  6') as 
an order parameter and define a critical value A,(@ by using p(A, 6') for each 6' 2 1. We 
find the following identities: 

A,(@ = inf[A 2 0 : p@, 6') z 01 

I-m 

AA, e) = vh.e{q : q ( x )  = 11 

= inf{A > 0 : P(qr # 0 ' t  2 0) z 0 for any nonempty initial state] 

= sup@ > 0 : P (q ,  = 0 for some f > 0) = 1 for any initial state]. (1.8) 

That is, any process becomes extinct with probability 1 if A < IC(@), while if A z A,(@) 
all processes starting from non-empty states have positive probabilities of survival. If we 
interpret the 6'-ce as a simple model of the spread of infection of a disease, the former 
may correspond to the extermination of the disease and the latter may represent the state 
where the infection is spreading and healthy individuals and infected ones coexist. In the 
context of the chemical reactions, the extinction state may cokespond to the poisoned state 
and the survival state may correspond to the active steady state of the catalytic surfaces. 
D m t t  and Griffeath (1983) observed that the edge speeds characterize the critical values 
and proved that A@) is a strictly decreasing function of 6' if 1 < 6' < 2. When we consider 
a (A, 6')-plane with 0 < A < CO, 1 < 6' < 03, A =A,(@) give3 a critical line which divides 
two phases of the long-term behaviour of the processes: extinction phase (A < A&')) and 
survival phase (A z A@)). 

Although the long-term behaviour has been well understood (Durrett and Griffeath 
1983), the value of A&') is still unknown for any 6'. For 6' = 2 (BCP), there have been 
many papers giving bounds for the critical value. Among them the bound Ac(2) < 2 given 
by Holley and Liggett (1978) is the best upper bound, which is much better than-the bounds 
obtained by the contour method (Gray and Gnffeath 1982). 

In the Holley-Liggett argument, the survival is proved by showing the existence of a 
renewal measure p such that 

v ~ , g { q  : q ( x )  = 1 for some x E A ]  > p(q : q ( x )  = 1 for some x E A} (1.9) 

for any Wtte subset A of Z (see Liggett 1985, pp 268-75). Here the renewal measure p 
is defined corresponding to some probability density f (n) of finite mean on [I, 2.3, . . .) as 
follows. If A = {XI, x2, . . !, x,) with < xz < . . < x,, then 

p[q : q(xi )  = 1 for 1 < i < n and q ( x )  = 0 "x 6 A such that XI < x < xn] 

(1.10) 
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In other words, p is the stationary distribution where the distances between successive 
particles are independent and identically distributed with density f ( n ) .  Of course such 
independence does not hold in the real distribution u,.,~. Therefore p can be considered 
an approximation for y , e .  In order to make (1.9) hold for any finite subsets A of 2, the 
density f ( n )  should be a logarithmically convex function in n. Holley and Liggett derived 
explicitly such an f ( n )  which is expressed by using factorials for the BCP (0 = 2) when 
A 2 2. Their result shows that the RHS of (1.9) is positive for all non-empty subsets A 
when A 2 2. Because it follows p(A, 2) 0 as a special case A = [x ) .  this result implies 
A m  < 2. 

Recently Liggett reported upper bounds for the critical values for two families of contact 
processes which are different from the 0-CP; the spatially inhomogeneous contact processes 
(Liggett 1991a), and the periodic threshold contact processes (Liggett 1991b). The latter 
family contains the TCP as a special case. His result is the following. Let hl be the largest 
root of the cubic equation A3 - ?.* - 3A + 1 = 0 (A, = 2.170.. .); then ?.,(I) < AI. The 
proof is also based on the Holley-Liggett argument. However, in this case, the explicit 
form of f (n) was not given and only the existence of the required renewal measure was 
shown. Unfortunately, it does not seem very easy to extend this new proof for 0 # 1. 

In the present paper, we extend the original proof of Holley and Liggett (1978) and 
give the upper bounds for the critical values A,(0) for 1 < 0 < 2 by constructing f ( n )  
explicitly. Our result is the following. 

Theorem 1.1. Assume that 1 < 0 < 2. Let ?.,(e) be the largest root of the cubic equation 

(1.11) 

M Katori and N Konno 

@A3 - (30 - 2)k - 3(2 - @)A+ (2 -0) = 0. 

It is easy to confirm that this contains Holley-Liggett’s bound Ac(2) < 2 and Liggett’s 
bound &(I)  < AI as special cases. We will derive iterative equations for f ( n )  and 
show that f ( n )  can be expressed by using Gauss’s hypergeometric series in the form 
F(- (n  - 21, -(n - I), 2; z) for 1 < B < 2. In the limit 0 + 2,  the variable z becomes 
1 and the hypergeometric series is reduced to a combination of the gamma functions (i.e. 
factorials), reproducing the result of Holley and Liggett (1978) for the BCP (0 = 2). Our 
result gives another proof of Liggett (1991b) for the TCP (0 = 1). 

It is rather easy to give lower bounds for A@) if 1 < 0 < 2. The following is a simple 
extension of the lower bound for the critical value of the BCP, h,(2) (1 + &)/6 = 
1.180 ..., given by Griffeath (1975). 

Theorem 1.2. Let 

?.,(e) = - [e- 1 + de2 + 108 + 131. 
2(0 + 1) 

(1.12) 

Then < Ac(0) for 1 < 0 < 2. 

The above two theorems give bounds for the critical line A = A,(@ in the phase diagram. 
Figure 2 shows the numerical values of the upper and lower bounds for the critical line 
given by our theorems. 

By computer simulations or some (non-rigorous) numerical methods, the critical values 
of the BCP and the TCP are estimated as, A&) = 1.649 (Brower et a! 1978, KOMO and 
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extinction survival 

h 

Figure 2. Upper and lower bounds for the critical line A = &(e) given by theorems l.l~and 1.2 
for I 6 @ < 2. The pinu marked by x show the values &(I) 2 1.742 and A&) 2 1.649 
estimated by compurer simulafions or some numerical methods. 

Katori 1990) ind A , ( l j r x  1.742 (Dickman and Burschka 1988, D i c & i  and Jensen 1991, 
Ferreira and Mendiratta 1993). Notice that the inverse of Tc = 0.60628 5 0.0@304 Of 
the D = 1 Reggeon quantum spin model estimated by Brower et al(1978) corresponds  to^ 
A&). Because the TCP is obtained from the A model of Dickman and Burschka (1988) 
by replacing particles by vacancies and vice versa, A,(l) is the inverse of the critical value 
A, = 0.574 141(2) (Dickman and Jensen 1991) of the A model. 

The paper is organized as follows. In section 2, we briefly review the Holley-Liggett 
argnment and remark on the required modifications for the present situation. Sections 3 and 
4 are devoted to proving theorem 1.1. There we show the probability density f expressed 
by using the hypergeometric series, which gives the desired renewal measure. The proof of 
theorem 1.2 is given in section 5. Some concluding remarks are given in section 6. 

2. The Holley-Liggett argument 

The Holley-Liggett argument (1978) treats coalescing dual processes. 
collection of all finite subsets of Z, and define 

Let Y be the 

for t7 E X, A E Y (the product over the empty set is taken to be I). It is easy to find that 

where 
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with 
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c ( x )  = 1 +eA (2.4) 
1/(1 +BA)  i f C = 0  
(e- l)h/(l +eh) 
(2-6')A/(l +Oh) 

[ o  otherwise 

(2.5) 
if C = {x - l , x )  or [ x , n +  I} 
if C = [ x  - l , x , x  + I ]  

P@, C) = 

where Q is the formal generator of the &contact processes (1.4). The above defines a 
continuous-time Markov chain on Y if and only if 1 < 0 < 2, and we write this process as 
A,. For every q E X and A E Y, the following duality relation holds for any t > 0 

S(t)H(., A)(q) = EA[H(q, 411 (2.6) 

where E A [  . 1 denotes the expectation value for the process smti?g from A; Ao = A. This 
dual process A, is the same as the coalescing branching processes {::(e. A)] found on page 9 
of Durrett and Griffeath (1983). If we regard A, as a set of the sites occupied by particles, 
we can say that each particle does three different things. A particle gives birth to a new 
particle at one of the neighbouring sites at rate (e - 1)h for each neighbouring site (single 
brunching). At rate (2  - @A, each particle gives birth to two particles simultaneously at 
both of the two neighbouring sites (double branching), and each particle will be annihilated 
at rate 1.  This process is a coalescing process; if a particle lands on a site which is already 
occupied, then two particles coalesce to form one particle. 

For all A E Y, define 

o(A) = PA(Ar # 0 for all f 2 O)%O. (2.7) 

By the duality relation (2.6). the critical value A,(@) defined by (1.8) is characterized by 
o(A) for 1 < 0 < 2 as 

h,(e) = inflh 2 o : U(A) > o A E Y, A # 01 = supp. 2 o : C(A) = o 'A E Y] (2.8) V 

(see the identity (IO) in Durrett and Griffeath 1983). 

page 268 of Liggett (1985). 

Proposition 2.1. If 

The Holley-Liggett argument is based on the following proposition as explained on 

and 

then 

(2.12) 
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Then the problem is how to choose h which satisfies the assumptions in proposition 2.1. 
If such an h is chosen and h ( A )  > 0 for all A # 0 for given (A, e), then A > A$) by the 
identity (2.8). Holley and Liggett proposed the following choice for the BCP (8 = 2). 

(a) Choose h of the form 

h(A) = p[q : q(x) = 1 

for some renewal measure p on X (with h(i3) = 0). 

with equality for all A of the form {1,2,. . . , n). 

for some x E A }  (2.13) 

(b)~Choose the density f ( n )  which determines p through (1.10) so that (2.11) holds 

It should be remarked that, by the duality relation (2.6). (2.7) is written as 

u ( A )  = vlg[q : q(x) = 1 for some x ' E ' A )  (2.14) 

by using the upper invariant measure of the 8-CP. Therefore the choice (a) seems to be 
natural, 

If we also take this choice for~B # 2, we obtain the following proposition. 

Proposition 2.2. Let 1 < @ < 2. Suppose that there are functions f ( n )  on [l,  2,3, . . .) 
which satisfy 

X f ( 3 )  + f(1)' - (2  + BA)f(Z) = 0 . 

and 

m 

Cf(4 = 1 

Then for all non-empty subsets A E Y 

u ( A )  = ui.o{q : q ( x )  = 1 for some x E A }  
2 ~ ( q  : q ( x )  = 1 for some x E A}  > 0 

(2.16) 

(2.17) 

(2.18) ~ 

where p is the renewal measure corresponding to-f(n). It means that the BCP survives. 
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Proof. Let F(n)  = E'& f ( k ) .  From the choice @), F(n) should satisfy the following 
equations: 

M Katori and N Konno 

e h ~ ( 2 )  + (2 - e ) h ~ ( 3 )  = ~ ( 1 ) ~  (2.21) 

(2.22) 
n 

F(k)F(n + 1 - k) = W F ( ~  + 1) n 2 2.  
k=l 

It should be remarked that (2.16) is written as 

F ( 1 )  = 1. (2.23) 

It is easy to see that (2.15) with (2.16) is equivalent to (2.21H2.23). We can see 
the detail of the Holley-Liggett argument for 0 = 2 cn pages 268-75 of Liggett (1985). 
Because proposition 2.2 is a straightforward extension of a part of lemma 1.25 on page 272 
of Liggett (1985) here we only give some remarks on the required modifications for the 
cases B # 2. 

Fix A E Y, and write A = Uf=,Ai, where Ai = [ij + 1, ri - 11 are the ordered maximal 
connected component of A. For x E Z, define 

R(x)  = @{q : q = 0 on A n ( x ,  m)lq(r) = 1) 

and 

L(x)  = p(q : q = 0 on A n (-CO, x)lq(n) = 11. 

By the properties of the renewal measure, the inequality (2.11) is written (instead of (1.26) 
on page 273 of Liggett 1985) as 

The equation (1.28) on page 273 of Liggett (1985), 

(2.25) 

is valid only for n 2 3 and the corresponding equation for n = 2 is given by 

2 ~ 2 )  = ~ ( i ) f ( i )  - ~ ( 2 )  + (2 - e)af(2) (2.26) 

following (2.21) and (2.22). It should be remarked that if we use (2.25) and (2.26) correctly, 
we rewrite (2.24) in the following form which is exactly the same as for the case B = 2 

It is proved by a part of lemma 1.25 on page 272 and lemma 1.24 on page 271 of Liggett 
U (1985) that (2.27) holds if the assumption (2.19) of proposition 2.2 is satisfied. 
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3. Renewal measures expressed by the hypergeometric series 

In order to solve (2.21)-(2.23), we introduce the generating function as done by Holley and 
Liggett 

where the assumption (2.23) is equivalent to 

= 1. 

Let 

2 - 0  
h x=- + ( e - { )  

(3.2) 

(3.3) 

y = (2 -e) + eh . (3.4) 

Then we obtain the equation which determines @(U) as 

(3.5) 

The unique solution of (3.5) satisfying (3.2) is given by 

(3.6) 

From now on we will assume that 0 < x < 1 and y i 0. Let 

(3.7) Y U* = 
1 + x * m  

then U- < 0 < U+. The function (3.6) is real analytic only when U- < U < U+. It implies 
that if U+ < 1 there is no real solution F(n)  which is summable, since E,"=, F(n)  = @(1). 
On the other hand, if U+ >, 1, that is, if 

y > , l + x + m - T s  (3.8) 

then we can obtain a real solution F(n)  of (2.21)-(2.23) by expanding (3.6) in a power 
series in U, which satisfies 

< 00. 

m m 

Fin) = c n f ( n )  = 
"=I 1 + x  " 3 1  

(3.9) 

To expand (3.6) in a power series in U, the following formula is useful. 
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Formula3.I. W h e n O < x < l a n d Q < s < l ,  

M Katori and N Konno 

(3.10) 

with 
nI2 

(3.11) 
1 and c, = -(A) 1 ei(n-*)pu(n, e-'"+) n 2 2 

CI = - 
2 2b-I 1 + x 

where 

(3.12) 

and u(n, z) is Gauss's hypergeometric series in the form 

u(n , z )=F( - (n -2 ) , - (n - l ) , 2 : z )  n 2 2 .  (3.13) 

Applying this formula to (3.6), we obtain the following lemma 

Lemma 3.2. Let x = (z - e ) / i  + (e - 1) and y = (2 -e)  + e i .  If o < x < I and 
y 2 1 + x  + Jm, then the unique solution of (215) which satisfies (2.16) and (2.17) 
is given by 

f ( n )  = F(n)  - F(n + 1) (3.14) 

where 

(3.15) 
1 

F(n)  = -w(n, y"-l x) . 

Here we define 

w(1,x) = 1 and w ( n , x )  = ( T )  ei(n--2'%(n,e-2ip) n 2 2 (3.16) 
1 +* nI2-1 

e i p = & + i J T  l + x  . I - x  

u(n, z) = F(-(n - 2). -(n - 1),2 z) n 2 2. 

(3.17) 

(3.18) 

It is remarked here that the hypergeometric series (3.18) satisfies the following iterative 
equation: 

( n + Z ) ~ ( n + 2 , z ) - ( ~ n + 1 ) ( 1 + z ) a ( n + 1 , z ) + ( n - 1 ) ( 1 - z ) ~ v ( n , z ) = 0  n >  I 

with u(1, z )  = u(2, z) = 1. Then we obtain the following equation for w ( n , x ) ,  n 2 1: 

( n + Z ) w ( n + 2 , x ) - ( 2 n + l ) ( l + x ) w ( n + l , x ) - ( n -  l)( l-x2)w(n,x)=0 (3.19) 

with 

w( l ,x )=w(2 ,x )=I  (3.20) 

where x is defined by (3.3) and 0 < x < 1 is assumed. 
Next we will prove the following lemma. 
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Lemma 3.3. If 0 6 x < 1 and y > 1 + x + m, f defined by (3.14H3.18) 
satisfies (2.18). In other words, f can be considered as a probability density on (1 ,2 . .  . .} 
with finite mean. 

Since (2.16) is satisfied, what we have to do is to show f (n) > 0 'n  > 1. From (3.14) 
and (3.15), it is equivalent to 

where 
Y ' a" 'n > 1 

On the behaviour of the series [U~(~)}~=I,Z,,.., the following lemma will be proved. 

Lemma 3.4. Let 
l l* (X)  = 1 + x  + Jm. 

F o r O < x < I  
lim u,(x) = n*(x) 

n-CO; 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

ai (x) 1 and u,(x) < U,+I (x) < u*(x) 'n >Z. (3.25) 
Then if y > a'fx), (3.21) holds. Now we prove lemma 3.4. 

Proof of Lemma 3.4. From (3.19), (3.20) and (3.22), we obtain the iterative equation for 
Gl(i)  

n - I  
n + 2  

U.+ l (x )= l+x+- ( l+  

with 

BY (3.26). 
aAx)  > 1 + x  'n  if o 6.z 6 I 

and we can derive from (3.26) the following equation for n 2 2 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

It is easy to confirm using (3.28) that the second term of the right side of (3.29) is positive 
and its third term is non-negative if 0 6 x 6 1. Then, for n > 2 

a&) e a,+l(x) + u,+z(x) e an+3(x) if 0 6 x 6 1 .  (3.30) 
Because 

U&) e a3(x) e a4(x) if ~ x > 0 (3.31) 
by (3.27), it is proved that a,,(x) is increasing in n for n 2 2, if 0 6 x 6 1. The limit 

0 

n 
(n + 2)(n +3) a,+t(x)un+dx) 

3 1 - 2  1 n 
f-- -- 

n + 3 a n + ~ ( ~ )  I n + 4 (n + 2)(n + 3) ui+,(x) 

(3.24) is obtained by taking the limit n + 00 in (3.26) with (3.28). 
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4. The monotonicity of f(n)/f(n + 1) 

In this section we will prove the following lemma. 

Lemma4.1. I f O < x  < l a n d y > a * ( x ) = l + x + m ,  f definedby(3.14H3.18) 
satisfies (2.19). 

Remark 4.1. 
reversible measure for the nearest-particle systems with birth rates 

M Katori and N Konno 

It is known that the stationary renewal measure with positive density f is a 

The monotonicity of f ( n ) / f ( n  + 1). (2.19). means that this system is attractive. 
By (3.14) and (3.15), f ( n ) / f  (n + 1) > f ( n  + I)/f (n + 2) is equivalent to 

where a.(x) is defined by (3.22). By lemma 3.4, if y 2 a*@). (4.2) is equivalent to 

F"(Y) > 0 (4.3) 
for n 2 2 with a quadratic 

It is easy to see that 3n(z) has real mots when 0 < x < 1 by lemma 3.4. Let y , h )  be the 
larger root of F,(z). If y > y n ( A  then f ( n ) / f ( n  + 1) > f (n + l ) / f ( n  +2). 

Lemma 4.2. If 0 6 x < 1, 

The following lemma will be proved for y,(x).  

Y&) < a'(x) (4.5) 
for all n > 2. 

O < X < l .  
At first we notice that lemma 3.4 guarantees that (4.5) follows if 3n(a*(x))  > 0 when 

For 0 4 x < 1, we define by using (3.16H3.18) 

f*(t~) = F*(n) - F*(n + 1). (4.7) 
In other words, f* (n)  is obtained from (3.14) and (3.15) by letting y = a*(x) .  Remark that 
f * ( n )  is a function of x .  By lemma 3.4, it is found that F,(a*(x)) 2 0 is equivalent to 

Define 

and 

(4.10) 

Then we can prove the following lemma. 
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Lemma 4 3 .  

(4.11) 

with 

5-K 
4K 

Kz - 4K f 7 K 3  - 9K2 + 21K - 21 
2 K ( K z  - 4K f 7) 

. (4.12) g(2) = - g(4) = - 
For O < x  < 1 

gh) < g ( n  + 1) ‘n > 2. (4.13) 

Proof of Lemma 4.3. By (3.19) and (3.15), we obtain the equation 

(n + 2)hZF(n + 2) - (2n + l)hF(n + 1) - (n - 1)- F(n)  = 0 (4.14) 

where we have used (3.3) and (3.4). It is easy to derive the following equation from (4.14): 

(n + 3)hZ f (n + 2) - ((21 + 3) - A}Af (n + 1) - (n - 1)- f (n) 

1 - x  
1 + x  

n > 1 

1 - x  
1 + x  

(4.15) 

The corresponding equation for f* (n)  is obtained by letting y = a*(x). Here we remark 
that, because of (3.3) and (3.4). for each 0 < x < 1 .. 

y = a * @ )  e A = K ( X )  (4.16) 

and that 

1 - X  

1 + x  
(4.17) 2 K (X) - %(X) - - =o. 

By definition (4.9), we have (4.11). Letting n = 1 in (4.11). we have g(2) = (5 - K ) / ~ K ,  
with which we obtain (4.12) by the iterative use of (4.11). 

It is easy to derive the following equation from (4.1 1) for n > 2 
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Note that the assumption 0 < x < 1 means that 
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2 < K <  I+%&. 

By direct calculation using (4.12), we can show that, if (4.19) is satisfied, 

g(2) < g(3) < g(4). 

g(2) < g(3) <. . . < g(n) < g(n + 1) < g ( n  +2). 

By (4.18) and (4.19), we can conclude that g(n + 2) < g(n + 3) from (4.21) if 

Now we prove (4.13) by induction. Suppose that 

On the other hand, it is easy to show by (4.11) that 

( 2 n + S ) - ~ ( Z n + 3 ) - ~  n K - 2  +-- (n + 4 ) ~  (n f 3 ) ~  n + 4  K 
2 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

if (4.19) is assumed. By direct computation, we can see that the right side of (4.23) is 
0 

Lemma 4.2 follows (4.13) of lemma 4.3, and as explained just above 

greater than that of (4.22) for n > 1, if (4.19) is assumed. 

ProofofLemmn 4.1. 
lemma 4.2, if 0 < x < 1 and y > a* (x ) ,  then 

On the other hand, we can confirm by direct calculation that 

(4.24) 

(4.25) 

U 

Combining Lemmas 3.2, 3.3 and 4.1 gives the following proposition. 

Proposition 4.4. k t  x = (2 - 0) /A + (0 - I) and y = (-2 - 0) + 0A. If 0 < x < I and 
y > 1 + x  + d m ,  then f defined by (3.14k(3.18) satisfies all of the assumptions 
(2.15>-(2.19) of proposition 2.2. 

It is easy to show from the definitions (3.3) and (3.4) that when 1 < 0 < 2, if h > 1 
and 

0A3 - (30 -?,)A* - 3(2 - @A+ (2 -0) > 0 (4.26) 

then 

O < X < l  and y > l + x + J m .  (4.27) 

0 

The numerical values of the largest root h ~ ( 0 )  of the cubic equation (1.11) which is 
obtained from (4.26) by replacing the inequality by an equality are given in table 1. There 
the values of h ~ ( 0 )  given by (1.12) are also listed. 

Therefore. the proof of theorem 1.1 is completed. 
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Table 1. Numerical values of the upper and lower bounds for the critical values &(e). 

661 1 

e AL(e) 
1.0 1.224 2.171 
1.1 1.219 2.148 
1.2 1.214 2.127 
1.3 1.209 2.107 
1.4 1.204 , 2.089 
1.5 1.2 2.072 
1.6 1.195 2.056 
1.7 1.191 2.041 
1.8 1.187 2027 
1.9 1.184 2.013 
2.0 1.180 2 

5. Proof of Theorem 1.2 

By (2.1X2.5). we can easily obtain~the following identity for any A E Y: 

CM4 \[XI) -u(A)1  +(e - l ) h ~ { I u ( A  U {x - I]) - u ( A ) I +  [u(A U{x+ 1)) -u (A) l ]  
X E A  XEA 

+ ( ~ - ~ ) ~ ~ [ u ( A U [ X - ~ . X + I ] ) - U ( A ) ]  = O  (5.1) 
X E A  

where u(A) is defined by (2.7) and u(L7) = 0. 

of the mechanism, we obtain the following identities. 

Lemma5.1. Forx ~ Z . l e t u 1  = u ( [ x ] ) , u ~ = u ( ~ x , x + l ) ) . u ~ = u ( [ x , x + l , x + 2 } ) , u ~  = 

Using (5.1) for all A C Ix, x + 1, x +2) and by the translation invariance and symmetry 

U ( ( X , X  +2)), U5 = o ( ( x , x  -k 1, x + 2 , ~  +3)), and 06 = U ( [ X , X  + 1, X +3}). Then 

(5.2) 

(5.3) 

2A~5 = - ~ 4  + (U + 3 ) ~ 3  - 2~7. 

(e - 1 p u 6  + (2 - e)hu5 = (1 + e w 4  - (e - l)AU3 - ul.  
(5.4) 

(5.5) 

It should be remarked that proposition 5.9 on page 165 of Liggett (1985) is valid for 
the present 8-w. Then u(A) is submodular in the sense that 

U(A U 5 )  + U(A n B )  6 U(A) + U(B) (5.6) 

whenever A,  B E Y. 

Using (5.6) for A = ( x , x + l ,  x+2) and B = {xf l ,  x+2, x+3) .  and for A = [ x ,  x+ 11 
and B = { x  + 1, x + 31. we obtain the following inequalities. 
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(5.7) 

(5.8) 

Proof of Theorem 1.2. Combining (5.4), (5.5), (5.7) and (5.8), we obtaiyfor 1 < 0 < 2 

~4 > -(2A - 3)03 + 2(A - I)UZ 

(A + i)u4 < (3 -@)A03 + (20 - 3)au2 - [(e - i ) ~  - 110, 

From them the following inequality is derived 

[?-AZ+ (2 - O)A - 3}03 + (-2A2+ (20 - ~ ) A + ~ } u z  - ((0 - 1)A - 1 1 ~ 1  > 0. 
By (5.2) and (5.3). it is equivalent to 

((0 + l)h2 - (0 - 1)A - 31~1 > 0 (5.9) 

if 1 < e < 2. Therefore, if A e A&'). where h ~ ( 0 )  is defined by (1.12), U, = 0. By 
the submodularity (5.6), u(A)  = 0 for any A E Y if U, = 0. Then by the identity (2.8), 
theorem 1.2 is proved. 0 

6. Concluding remarks 

In this section, we give some comments on our results. First we remark that we can obtain 
the lower bound for the order parameter p(A, e), (1.7). as a corollary of propositions 2.2 
and 4.4, because p(A.0)  = u ( [ x } )  by (2.14). 

Corollary 6.1. Let A& be the upper bound of A@) defined in theorem 1.1. For 
1 < 0 < 2 and A > Au(0), p(A, 0) > &(A, e) ,  where 

It should be remarked that a(A.0)  is the inverse of @(1) given by (3.9) and that for 
1 6 0 9 2  
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PL 

8 

1.0 F- 

B=l .OI  I /  I I I 
0 2 4 6 8 

?k 

Figure 3. Lower bounds p ~ ( h , O j  for the order parameters p ( i . 8 )  given by corollary 6.1. 
Norice that these bounds are positive for A 2 h(8). which implies l , ( R )  ,< A&). 

The lower bounds &(A., 8) for the order parameters p ( h ,  8) given by (6.1) are shown 
in figure 3 for various values of 8. 

Next we discuss the relationship between our renewal measure corresponding to f 
defined by (3.14H3.18) and others. In the limit 8 -+ 2. x and y become 1 and 2A, 
respectively, and e@ + 1 in (3.17). Because 

(3.15) becomes 

(2(n - I ) ) !  1 
(n - l ) !n!  ( 2 A y - I  

F(n) = 

(6.5) 

in this limit. This is nothing but the function which gives the renewal measure of Holley 
and Liggett (see (1.18) on page 270 of Liggett 1985). In other words, the renewal 
measures corresponding to f defined by (3.14)-(3.18) m&e a new class of renewal measures 
parametrized by two variables x and y. which contains Holley-Liggett's as a special case. 
In order to obtain an upper bound for the critical value of the TCP, Liggett (1991b) defined 
f ( t ,  n )  for t 2 0 and n 2 1 as a solution of a set of tbe'differential equations with respect 
to time t under some initial condition. When 0 = 1, the probability density f (n) defined in 
the present paper may be the limit of this f ( r ,  n )  in t + CO. We hope that the present study 
will extend the utility of the Holley-Liggett argument for proving the survival of processes. 

Recently many kinds of non-equilibrium stochastic lattice models have been introduced 
and studied intensively to understand nonequilibrium phase transitions (Dickman 1993). 
Algorithms for computer simulations and series expansion techniques have been developed 
and the efficiency of these methods are also reported for these non-equilibrium models as 
well as for equilibrium spin models. However, exact or rigorous results for non-equilibrium 
models are still few in comparison with equilibrih systems. The work reported here is one 
of the trials to extend the statements which can be proved rigorously for the non-equilibrium 
stochastic lattice models. 
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